麗台國際有限公司

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

文件序號: T2020264

技術類別:《齒輪應用》

技術類別	齒輪應用			
篇 名	太陽型行星齒輪轉速及力矩比例			
重點	太陽型行星齒輪轉速及力矩比例			
產出日期	2020/05/20			
資料來源	日本 KHK / 台灣昭源提供 麗台國際有限公司整理			

麗台國際有限公司

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

問:

計算行星齒輪的強度時,其轉速應該取行星齒與內齒之速比,或行星齒與中心齒之速比?或行星齒的實際轉速?也就是行星齒的轉速應怎樣取捨?

***我的齒輪組數據是:

太陽齒輪 M2x20T

行星齒輪 M2x17Tx2 個

內齒輪 M2x54T

內齒輪的轉速為 27.5 rpm

馬達 0.75 kw

(為太陽型行星齒輪:內齒輪為主動,太陽齒輪為固定,和一般習慣不一樣)

經速度分析

Arm 的轉速為 27.5x54/(54+20)=20 rpm

行星齒的實際轉速為 27.5x54/17x(17+20)/(54+20)=43.7 rpm

答覆:

您所提出的為典型的太陽型行星齒輪組,也就是中心的太陽齒輪固定不轉動, 主動齒輪為內齒輪,帶動行星齒輪照著太陽齒輪一面自轉一面公轉,並將公轉 經由 Arm(旋臂,也就是輸出軸)引出。

太陽型行星齒輪組轉速比計算

	太陽齒輪 (固定)	行星齒輪	內齒輪(輸入)	旋臂 (輸出)
	Za	Zb	Zc	Arm
將 Arm 固定	+1	−Za/Zb	−Za/Zc	0
全系統膠黏一體	-1	-1	-1	-1
上二式相加	0 (固定)	-(Za/Zb+1)	-(Za/Zc+1)	-1

減速比=(輸出轉速/輸入轉速)

以 太陽齒輪 Za=M2x20T

行星齒輪 Zb=M2x17Tx2 個

內齒輪 Zc=M2x54T 為例,則實際各齒輪的轉速可經由下表得知:

	太陽齒輪(固定)	行星齒輪	內齒輪(輸入)	旋臂(輸出)
	Za	Zb	Zc	Arm
各齒輪轉速比	0	2.17647	1.37037	1
實際轉速 rpm	0	43.6765	27.5000	20.0676

麗台國際有限公司

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

減速比= (輸出轉速 / 輸入轉速) = 1/1.37037

齒輪的強度通常應由負荷來算得,但往往負荷情形不明,因此也可由所使用的 馬達的功率計算出齒輪的容許負荷。

由於一般機械為定馬力負荷,當轉速變慢時,力矩會隨之增加,力矩與轉速的關係為倒數關係,因此可由各齒輪間轉速的比例關係推導出各齒輪間力矩(負荷)的比例關係。

由力學公式: $kW = (T \times n / 974)$,其中 kW 為馬達功率,T 為力矩(kg-m),n 為轉速(rpm),則力矩 $T = 974 \times kW / n$

	太陽齒輪(固定)	行星齒輪	內齒輪(輸入)	旋臂(輸出)
	Za	Zb	Zc	Arm
各齒輪轉速比	0	2.17647	1.37037	1
實際轉速 rpm	0	43.6765	27.5000	20.0676
各齒輪力矩比	0.5405	0.45946	0.72973	1
實際力矩 kg-m	19.6767	16.7252	26.5636	36.4020

至於太陽齒輪 Za(固定不動)的力矩,應將之比擬成與行星齒輪 Zb 做運轉時,力矩的比例關係,也就是力矩比=齒數比,來計算太陽齒輪的容許力矩。

因此,齒輪的強度(容許力矩)計算應分別與各齒輪實際的負荷力矩來查核,是否容許力矩會大於負荷力矩。若「是」則 OK,若有任何一個齒輪的容許力矩比實際負荷力許還小的話,應將全數齒輪的模數放大或是變更材質,直到全部齒輪的容許力矩都大於實際負荷力矩為止。