Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

文件序號: T2020254

技術類別:《齒輪應用》

技術類別	齒輪應用			
篇 名	平行軸齒輪各分力計算			
重點	平行軸齒輪各分力計算			
產出日期	2020/05/19			
資料來源	日本 KHK / 台灣昭源提供 麗台國際有限公司整理			

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

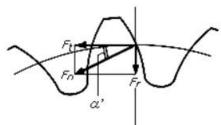
TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

問:

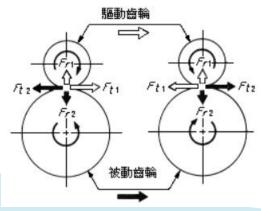
請問,作用於平行軸齒輪齒上的力要如何計算?

答:


作用於平行軸齒輪齒上的力,將分成正齒輪以及螺旋齒輪來做說明。

1. 正齒輪

垂直作用在齒面上的力 Fn 可被分解為切線方向分力 Ft 和半徑方向分力 Fr。


$$\begin{cases} F_t = F_n \cos \alpha' \\ F_r = F_n \sin \alpha' \end{cases}$$

但在軸方向上不會產生分力 Fx。

作用在正齒輪齒上的力

上圖中,為作用在正齒輪齒上各分力的方向。圖示中,作用在主動齒輪節圓的圓周方向分力 Ft1 與作用在被動齒輪節圓的圓周方向分力 Ft2,大小相同。在半徑方向上的分力也有同樣情形。

在正齒輪上的各分力方向

2. 螺旋齒輪

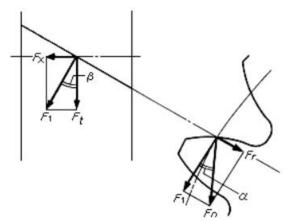
Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

作用在螺旋齒輪齒上的力

作用在螺旋齒輪齒上的力如下圖所示。垂直於齒面(齒直角平面)的作用力為 Fn, Fn 可被分解成圓周方向分力 F1 和半徑方向分力 Fr。


$$\begin{cases} F_1 = F_n \cos \alpha_n \\ F_r = F_n \sin \alpha_n \end{cases}$$

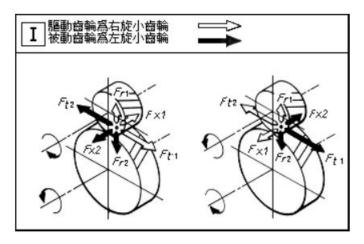
齒直角平面圓周方向分力 F_1 ,可再被分解為切線方向分力 F_t 和軸方向分力 F_x 。

$$\begin{cases} F_t = F_1 \cos \beta \\ F_x = F_1 \sin \beta \end{cases}$$

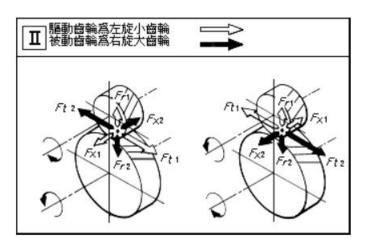
三者之間的關係為:

$$\begin{cases} F_x = F_t \tan \beta \\ F_r = F_t \frac{\tan \alpha_n}{\cos \beta} \end{cases}$$

在螺旋齒輪齒上作用力的方向。


圖中,作用在主動齒輪上的軸向分力 Fx1 和作用在被動齒輪上的 Fx2 大小相等, 圓周方向上的分力及半徑方向上的分力也有同樣情形。

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F


TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

I 主動齒輪為右旋小齒輪 被動齒輪為左旋大齒輪

Ⅱ 主動齒輪為左旋小齒輪 被動齒輪為右旋大齒輪 在螺旋齒輪上的各分力方向

整理得:

齒輪的種類	F,:切線力	F_x :軸向力	F_r :徑向力	F_n :垂直齒面力
正齒輪	$F_t = \frac{2000T}{d}$		$F_{t} an lpha$	$\frac{F_t}{\cos \alpha}$
螺旋齒輪		$F_t \tan eta$	$F_t \frac{\tan \alpha_n}{\cos \beta}$	$\frac{F_t}{\cos \alpha_n \cos \beta}$