Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

文件序號: T2020191

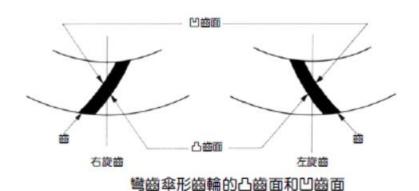
技術類別:《齒輪應用》

技術類別	齒輪應用					
篇 名	作用於彎齒傘形齒輪齒上的力					
重點	作用於彎齒傘形齒輪齒上的力					
產出日期	2020/02/25					
資料來源	日本 KHK / 台灣昭源提供 麗台國際有限公司整理					

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw



問:

請問,作用於彎齒傘形齒輪齒上的力要如何計算?

答:

彎齒傘形齒輪有凸齒面及凹齒面之分,依力所驅動齒面的不同,齒所受的各分力也不同。下圖為凸齒面及凹齒面的分辨方法。

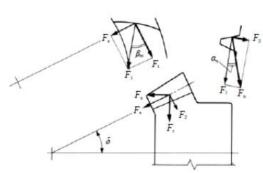
齒輪在相互咬合時,當小齒輪的凸齒面為驅動面時,相配合的大齒輪之凹齒面 為被動面。

咬合齒面的分類列於下表。齒輪的旋轉方向是從齒輪的背面看上去時的轉向。

咬合齒面一覽表 右旋齒輪為主動時

主動齒輪的	咬合齒面			
旋轉方向	右旋齒輪主動	左旋齒輪被動		
右旋 (順時針回轉)	凸齒面	凹齒面		
左旋 (逆時針回轉)	凹齒面	凸齒面		

左旋齒輪為主動時


主動齒輪的	咬合齒面			
旋轉方向	左旋齒輪主動	右旋齒輪被動		
右右旋 (順時針回轉)	凹齒面	凸齒面		
左旋 (逆時針回轉)	凸齒面	凹齒面		

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

(1) 凸齒面為主動時

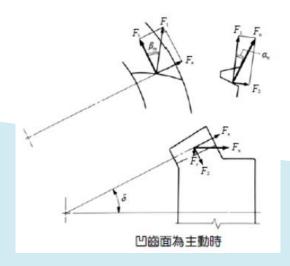
齒幅中央的齒直角平面上,垂直於齒面的作用力 F_n 在此平面上可被分解為 F_n 和 F_n 。

凸齒面為主動時

$$\begin{cases}
F_1 = F_n \cos \alpha_n \\
F_2 = F_n \sin \alpha_n
\end{cases}$$
(1)

 F_1 在節平面上可再被分解為 F_t 和 F_s 。

$$\begin{cases}
F_t = F_1 \cos \beta_m \\
F_s = F_1 \sin \beta_m
\end{cases}$$
(2)


 F_2 和 F_s 在軸平面上又可分解為軸向分力及徑向分力,將這些力合成後得:

$$\begin{cases} F_x = F_2 \sin \delta - F_S \cos \delta \\ F_r = F_2 \cos \delta + F_S \sin \delta \end{cases}$$
 (3)

上述關係式可綜合為:

$$\begin{cases} F_x = \frac{F_t}{\cos \beta_m} (\tan \alpha_n \sin \delta - \sin \beta_m \cos \delta) \\ F_r = \frac{F_t}{\cos \beta_m} (\tan \alpha_n \cos \delta + \sin \beta_m \sin \delta) \end{cases}$$
(4)

(2) 凹齒面為主動時

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

齒幅中央的齒直角平面上,垂直於齒面的作用力 F_n 可被分解為 F_1 和 F_2 。

$$\begin{cases}
F_1 = F_n \cos \alpha_n \\
F_2 = F_n \sin \alpha_n
\end{cases}$$
(5)

 F_1 在節平面上可再被分解為 F_t 和 F_s 。

$$\begin{cases}
F_t = F_1 \cos \beta_m \\
F_s = F_1 \sin \beta_m
\end{cases}$$
(6)

到此為止,計算式與凸齒面的相同。以下的計算式開始不同。 F2和 Fs在軸平面上又可分解為軸向分力及徑向分力,將這些力合成後得:

$$\begin{cases}
F_x = F_2 \sin \delta + F_s \cos \delta \\
F_r = F_2 \cos \delta - F_s \sin \delta
\end{cases}$$
(7)

上述關係式可綜合為:

$$\begin{cases} F_{x} = \frac{F_{t}}{\cos \beta_{m}} (\tan \alpha_{n} \sin \delta + \sin \beta_{m} \cos \delta) \\ F_{r} = \frac{F_{t}}{\cos \beta_{m}} (\tan \alpha_{n} \cos \delta - \sin \beta_{m} \sin \delta) \end{cases}$$
(8)

設軸角 $\Sigma=90^\circ$,齒直角壓力角 $\alpha_n=20^\circ$,中央螺旋角 $\beta_m=35^\circ$ 的彎齒傘形齒輪齒 幅中央的切線力為 100 時,軸向力 F_x 和徑向力 F_r 的大小比例,列於下表中。

表:軸向力 F_x 和徑向力 F_r 的比例

(1) 小齒輪所受作用力

咬合主動齒面	齒數比 z ₂ /z ₁						
	1.0	1.5	2.0	2.5	3.0	4.0	5.0
凹齒面	80.9	82.9	82.5	81.5	80.5	78.7	77.4
	-18.1	-1.9	8.4	15.2	20.0	26.1	29.8
凸齒面	-18.1	-33.6	-42.8	-48.5	-52.4	-57.2	- 59.9
	80.9	75.8	71.1	67.3	64.3	60.1	57.3

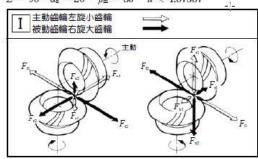
(2) 大齒輪所受作用力

Lead Taiwan International Corporation 台中市台灣大道二段 285 號 20F

TEL: 886-423232026, Website: www.ltic.com.tw,

Email: salestw@ltic.com.tw

咬合主動齒面	齒數比 z ₂ /z ₁						
	1.0	1.5	2.0	2.5	3.0	4.0	5.0
凹齒面	80.9	75.8	71.1	67.3	64.3	60.1	57.3
	-18.1	-33.6	-42.8	-48.5	-52.4	-57.2	- 59.9
凸齒面	-18.1	-1.9	8.4	15.2	20.0	26.1	29.8
	80.9	82.9	82.5	81.5	80.5	78.7	77.4


如上(1)表所示,彎齒傘形齒輪的軸向力 Fx 會出現負值。負值表示齒輪上會有讓兩齒面相互朝兩軸交點方向擠進的力(趨勢)發生,如果再加上此時軸向上的軸承有間隙的話,將會使得齒輪如不可避免地朝兩軸交點擠進,甚至有無齒隙狀態發生的可能。兩齒面間無間隙的擠壓咬合,會對齒輪造成不良影響,所以,需要特別注意軸向上軸承的間隙。

上表(2)的大齒輪凸齒面所受力中,齒數比在 1.5 到 2.0 之間時,軸向力會由負值變為正值。

而在軸向力由負轉正的變化點上,此時的齒數比為 Z₂/Z₁=1.57357。

下圖為軸角 Σ =90°,齒直角壓力角 α_n =20°,中央螺旋角 β_m =35°的彎齒傘形齒輪,齒數比 $z_2 < z_1$ =1.57357 的齒輪齒面受力方向圖

 $\Sigma = 90^{\circ} \ \alpha_{\text{m}} = 20^{\circ} \ \beta_{\text{m}} = 35^{\circ} \ u < 1.57357$

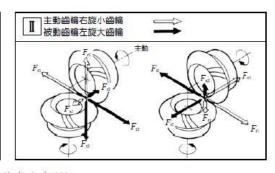
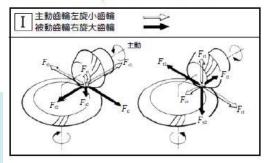



圖:彎齒傘形齒輪齒的各分力方向(1)

下圖為齒數比 z₂ / z₁ ≥1.57357的齒輪齒面受力方向圖

 $\Sigma = 90^{\circ}$ $a_n = 20^{\circ}$ $\beta_m = 35^{\circ}$ $u \ge 1.57357$

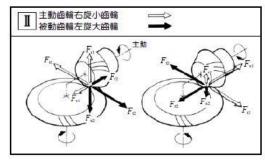


圖:彎齒傘形齒輪齒的各分力方向(2)